organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(±)-3-(2,6-Dichlorophenyl)-1-phenyl-2,3-dihydro-1*H*-naphtho[1,2-e][1,3]oxazine

Zhi-Gang Yin,* Heng-Yu Qian, Chen Yu-Zhen and Feng Yu-Li

Key Laboratory of Surface and Interface Science of Henan, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: yinzhigang3141@yahoo.com.cn

Received 20 October 2007; accepted 2 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.151; data-to-parameter ratio = 15.8.

In the title compound, $C_{24}H_{17}Cl_2NO$, the oxazine ring is distorted and adopts an envelope conformation. The dihedral angle between the dichlorophenyl ring and the naphthyl system is 85.30 (13)°. An intramolecular N-H···Cl hydrogen bond is observed.

Related literature

For related literature, see: Cremer & Pople (1975); Fuganti *et al.* (1994); Ren *et al.* (2001).

Experimental

Crystal data
C ₂₄ H ₁₇ Cl ₂ NO
$M_r = 406.29$
Orthorhombic, Pbca
a = 10.8041 (9) Å

b = 10.0189 (9) Åc = 36.119 (3) Å $V = 3909.7 (6) \text{ Å}^3$

Z = 8

Mo $K\alpha$ radiation $\mu = 0.35 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\rm min} = 0.912, T_{\rm max} = 0.928$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.050 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.151 & \text{independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 4060 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.22 \text{ e } \text{ Å}^{-3} \\ 257 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.40 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots Cl2$	0.851 (10)	2.88 (2)	3.406 (2)	121.6 (19)

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the Startup Fund for PhDs (grant No. 2005001) and the Startup Fund for Masters (grant No. 000455) of Natural Scientific Research of Zhengzhou University of Light Industry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2255).

References

- Bruker (1998). SMART (Version 5.628), SAINT (Version 6.02) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Fuganti, C., Lanati, S. & Servi, S. (1994). Bioorg. Med. Chem. 4, 723-726.
- Ren, H., Grady, S., Gamenara, D., Heinzen, H., Moyna, P., Croft, S. L., Kendrick, H., Yardley, V. & Moyna, G. (2001). *Bioorg. Med. Chem. Lett.* 11, 1851–1854.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

T = 298 (2) K 0.27 × 0.23 × 0.22 mm

43758 measured reflections 4060 independent reflections 2484 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

supplementary materials

Acta Cryst. (2007). E63, o4626 [doi:10.1107/81600536807055432]

(±)-3-(2,6-Dichlorophenyl)-1-phenyl-2,3-dihydro-1*H*-naphtho[1,2-*e*][1,3]oxazine

Z.-G. Yin, H.-Y. Qian, C. Yu-Zhen and F. Yu-Li

Comment

The class of oxazine derivatives is useful heterocyclic compound which is widely used as antimalarial agent(Ren *et al.*,2001) and a versatile intermediate for the synthesis of carbapenems(Fuganti *et al.*, 1994). Here we present the synthesis and crystal structure of the title compound(I).

The oxazine ring is distorted and adopts a half chair conformation (Fig.1), the dihedral angle between the O1/C15/C16 plane and the N1/C1/C7/C8 plane is 46.08°.

The ring puckering parameters (Cremer & Pople, 1975) for the oxazine are, Q = 0.450 (2) Å, $\theta = 125.0$ (3) ° and $\varphi = 298.2$ (3) ° indicating an enveloppe conformation. The dichlorophenyl ring makes dihedral angles of 61.27 (18)° and 61.35 (15)° with the benzene ring and the naphthyl system, respectively. The C7—O1 and C7—N1 bond lengths are 1.454 (3)Å and 1.429 (3)\%A. The structure is stabilized by intramolecular N1—H1···Cl2 hydrogen bond(table 1).

Experimental

1-(amino(phenyl)methyl)naphthalen-2-ol(1 mmol, 0.249 g) was dissolved in anhydrous methanol, the mixture was stirred for several minitutes, 2,6-dichlorobenzyaldehyde(1 mmol 0.175 g) in methanol (8 ml) was added dropwise and the mixture was stirred at room temperature for 2 h. The product was isolated and recrystallized in methanol, colourless single crystals of (I) was obtained after 3 d.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.98 Å (methine) with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms attached to nitrogen has been located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.86 (1)Å with $U_{iso}(H) = 1.5U_{eq}(N)$.

Figures

Fig. 1. Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii.

(+/-)-3-(2,6-Dichlorophenyl)-1-phenyl-2,3-dihydro-1*H*-naphtho[1,2-\ e][1,3]oxazine

Crystal data	
C ₂₄ H ₁₇ Cl ₂ NO	$F_{000} = 1680$
$M_r = 406.29$	$D_{\rm x} = 1.380 {\rm ~Mg~m^{-3}}$
Orthorhombic, Pbca	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 1420 reflections
a = 10.8041 (9) Å	$\theta = 2.2 - 24.3^{\circ}$
b = 10.0189 (9) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 36.119 (3) Å	T = 298 (2) K
$V = 3909.7 (6) \text{ Å}^3$	Block, colourless
Z = 8	$0.27\times0.23\times0.22~mm$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	4060 independent reflections
Radiation source: sealed tube	2484 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 298(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -13 \rightarrow 13$
$T_{\min} = 0.912, \ T_{\max} = 0.928$	$k = -12 \rightarrow 12$
43758 measured reflections	$l = -45 \rightarrow 45$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.151$	$w = 1/[\sigma^2(F_o^2) + (0.0627P)^2 + 1.1294P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
4060 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
257 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0016 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.35756 (10)	-0.01015 (9)	0.47316 (3)	0.1301 (4)
C12	-0.05546 (8)	0.25328 (10)	0.42897 (3)	0.1288 (4)
01	0.09492 (15)	0.05472 (17)	0.39088 (5)	0.0714 (5)
N1	0.24544 (18)	0.23064 (18)	0.40158 (5)	0.0577 (5)
H1	0.1936 (18)	0.2944 (18)	0.4028 (7)	0.069*
C1	0.1477 (2)	0.1169 (2)	0.45289 (6)	0.0616 (6)
C2	0.2172 (3)	0.0667 (3)	0.48184 (8)	0.0848 (9)
C3	0.1796 (6)	0.0765 (5)	0.51820 (10)	0.1315 (17)
H3	0.2287	0.0428	0.5371	0.158*
C4	0.0693 (7)	0.1363 (6)	0.52598 (13)	0.160 (3)
H4	0.0429	0.1420	0.5504	0.192*
C5	-0.0030 (5)	0.1882 (4)	0.49849 (14)	0.1293 (17)
Н5	-0.0779	0.2292	0.5041	0.155*
C6	0.0363 (3)	0.1790 (3)	0.46230 (8)	0.0840 (8)
C7	0.1943 (2)	0.1069 (2)	0.41385 (6)	0.0577 (5)
H7	0.2612	0.0409	0.4137	0.069*
C8	0.2899 (2)	0.2203 (2)	0.36306 (6)	0.0545 (5)
H8	0.3082	0.3110	0.3545	0.065*
С9	0.4104 (2)	0.1421 (2)	0.36226 (6)	0.0564 (6)
C10	0.5121 (3)	0.1931 (3)	0.38075 (8)	0.0844 (8)
H10	0.5061	0.2749	0.3928	0.101*
C11	0.6226 (3)	0.1236 (5)	0.38154 (10)	0.1080 (11)
H11	0.6904	0.1590	0.3940	0.130*
C12	0.6325 (3)	0.0028 (4)	0.36396 (11)	0.1008 (11)
H12	0.7066	-0.0443	0.3649	0.121*
C13	0.5331 (2)	-0.0489 (3)	0.34496 (8)	0.0822 (8)
H13	0.5399	-0.1302	0.3327	0.099*
C14	0.4232 (2)	0.0211 (2)	0.34435 (6)	0.0625 (6)
H14	0.3560	-0.0140	0.3315	0.075*
C15	0.18997 (19)	0.1652 (2)	0.33852 (6)	0.0547 (5)
C16	0.0986 (2)	0.0886 (2)	0.35411 (7)	0.0610 (6)
C17	-0.0003 (2)	0.0385 (3)	0.33265 (9)	0.0773 (7)
H17	-0.0624	-0.0114	0.3438	0.093*

supplementary materials

C18	-0.0047 (3)	0.0632 (3)	0.29574 (9)	0.0852 (8)
H18	-0.0697	0.0289	0.2818	0.102*
C19	0.0876 (2)	0.1399 (3)	0.27812 (8)	0.0737 (7)
C20	0.0857 (3)	0.1656 (3)	0.23973 (9)	0.0939 (10)
H20	0.0224	0.1297	0.2254	0.113*
C21	0.1733 (4)	0.2410 (4)	0.22337 (9)	0.1035 (11)
H21	0.1708	0.2556	0.1980	0.124*
C22	0.2678 (3)	0.2969 (3)	0.24464 (7)	0.0895 (9)
H22	0.3269	0.3509	0.2334	0.107*
C23	0.2741 (3)	0.2731 (3)	0.28176 (7)	0.0729 (7)
H23	0.3383	0.3104	0.2955	0.088*
C24	0.1852 (2)	0.1931 (2)	0.29982 (6)	0.0609 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1270 (8)	0.0978 (6)	0.1654 (9)	0.0119 (5)	-0.0736 (7)	-0.0025 (6)
C12	0.0843 (6)	0.1073 (7)	0.1950 (11)	0.0303 (5)	0.0179 (6)	0.0009 (7)
01	0.0700 (11)	0.0685 (10)	0.0757 (11)	-0.0240 (8)	0.0004 (8)	-0.0048 (8)
N1	0.0622 (11)	0.0528 (11)	0.0580 (11)	-0.0092 (9)	0.0081 (9)	-0.0083 (9)
C1	0.0713 (15)	0.0489 (12)	0.0646 (14)	-0.0111 (11)	0.0114 (12)	-0.0030 (10)
C2	0.119 (2)	0.0648 (16)	0.0710 (18)	-0.0322 (16)	-0.0129 (16)	0.0017 (13)
C3	0.210 (5)	0.119 (3)	0.065 (2)	-0.084 (3)	-0.012 (3)	0.002 (2)
C4	0.269 (8)	0.130 (4)	0.082 (3)	-0.111 (5)	0.069 (4)	-0.040 (3)
C5	0.159 (4)	0.091 (3)	0.138 (3)	-0.045 (2)	0.091 (3)	-0.044 (3)
C6	0.090 (2)	0.0641 (15)	0.098 (2)	-0.0122 (14)	0.0370 (17)	-0.0110 (14)
C7	0.0571 (12)	0.0524 (12)	0.0635 (14)	-0.0051 (10)	0.0047 (11)	-0.0061 (10)
C8	0.0579 (13)	0.0556 (13)	0.0499 (12)	-0.0091 (10)	0.0031 (10)	-0.0052 (10)
C9	0.0503 (12)	0.0688 (14)	0.0501 (12)	-0.0107 (11)	0.0028 (10)	0.0029 (10)
C10	0.0659 (17)	0.105 (2)	0.0820 (18)	-0.0120 (16)	-0.0122 (14)	-0.0117 (16)
C11	0.0606 (19)	0.146 (3)	0.118 (3)	-0.018 (2)	-0.0249 (17)	0.009 (2)
C12	0.0507 (16)	0.124 (3)	0.128 (3)	0.0081 (18)	0.0072 (17)	0.032 (2)
C13	0.0639 (17)	0.0863 (19)	0.097 (2)	0.0076 (14)	0.0183 (15)	0.0106 (16)
C14	0.0507 (13)	0.0715 (15)	0.0654 (14)	-0.0034 (11)	0.0071 (10)	-0.0002 (12)
C15	0.0493 (12)	0.0532 (12)	0.0617 (14)	0.0032 (10)	-0.0030 (10)	-0.0102 (10)
C16	0.0564 (13)	0.0573 (13)	0.0693 (16)	-0.0006 (11)	-0.0041 (11)	-0.0107 (11)
C17	0.0573 (14)	0.0706 (16)	0.104 (2)	-0.0080 (12)	-0.0128 (14)	-0.0130 (15)
C18	0.0732 (18)	0.0804 (18)	0.102 (2)	0.0057 (15)	-0.0364 (16)	-0.0224 (16)
C19	0.0710 (16)	0.0706 (16)	0.0795 (18)	0.0176 (14)	-0.0211 (14)	-0.0187 (13)
C20	0.103 (2)	0.102 (2)	0.076 (2)	0.030 (2)	-0.0342 (18)	-0.0223 (17)
C21	0.128 (3)	0.122 (3)	0.0605 (18)	0.041 (2)	-0.016 (2)	-0.0045 (18)
C22	0.104 (2)	0.102 (2)	0.0623 (17)	0.0224 (18)	0.0041 (16)	0.0032 (15)
C23	0.0777 (17)	0.0803 (17)	0.0608 (15)	0.0121 (14)	0.0002 (13)	-0.0053 (13)
C24	0.0617 (14)	0.0614 (13)	0.0594 (14)	0.0156 (12)	-0.0084 (11)	-0.0092 (11)

Geometric parameters (Å, °)

Cl1—C2	1.729 (4)	C11—C12	1.371 (5)
Cl2—C6	1.728 (3)	C11—H11	0.9300

O1—C16	1.371 (3)	C12—C13	1.376 (4)
O1—C7	1.454 (3)	C12—H12	0.9300
N1—C7	1.428 (3)	C13—C14	1.379 (3)
N1—C8	1.476 (3)	С13—Н13	0.9300
N1—H1	0.851 (10)	C14—H14	0.9300
C1—C2	1.382 (4)	C15—C16	1.372 (3)
C1—C6	1.397 (4)	C15—C24	1.426 (3)
C1—C7	1.500 (3)	C16—C17	1.412 (3)
C2—C3	1.378 (5)	C17—C18	1.357 (4)
C3—C4	1.363 (7)	C17—H17	0.9300
С3—Н3	0.9300	C18—C19	1.410 (4)
C4—C5	1.366 (7)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.411 (4)
C5—C6	1.377 (5)	C19—C24	1.418 (3)
С5—Н5	0.9300	C20—C21	1.347 (5)
С7—Н7	0.9800	C20—H20	0.9300
C8—C15	1.502 (3)	C21—C22	1.396 (5)
C8—C9	1.520 (3)	C21—H21	0.9300
С8—Н8	0.9800	C22—C23	1.363 (4)
C9—C14	1.381 (3)	С22—Н22	0.9300
C9—C10	1.384 (3)	C23—C24	1.411 (4)
C10-C11	1.382 (5)	С23—Н23	0.9300
C10—H10	0.9300		
C16—O1—C7	116.25 (17)	C12—C11—H11	119.9
C7—N1—C8	110.97 (16)	C10-C11-H11	119.9
C7—N1—H1	112.4 (17)	C11—C12—C13	120.2 (3)
C8—N1—H1	108.3 (17)	C11—C12—H12	119.9
C2—C1—C6	116.5 (2)	C13—C12—H12	119.9
C2—C1—C7	120.3 (2)	C12—C13—C14	119.2 (3)
C6—C1—C7	123.2 (2)	C12—C13—H13	120.4
C3—C2—C1	122.3 (4)	C14—C13—H13	120.4
C3—C2—Cl1	117.6 (3)	C13—C14—C9	121.7 (2)
C1—C2—Cl1	120.1 (2)	C13-C14-H14	119.2
C4—C3—C2	119.1 (5)	C9—C14—H14	119.2
С4—С3—Н3	120.5	C16—C15—C24	119.1 (2)
С2—С3—Н3	120.5	C16—C15—C8	118.7 (2)
C3—C4—C5	121.2 (4)	C24—C15—C8	122.2 (2)
C3—C4—H4	119.4	O1—C16—C15	123.9 (2)
С5—С4—Н4	119.4	O1—C16—C17	114.9 (2)
C4—C5—C6	119.2 (5)	C15-C16-C17	121.2 (2)
C4—C5—H5	120.4	C18—C17—C16	120.1 (3)
С6—С5—Н5	120.4	C18—C17—H17	120.0
C5—C6—C1	121.8 (4)	С16—С17—Н17	120.0
C5—C6—Cl2	117.1 (3)	C17—C18—C19	121.2 (2)
C1—C6—Cl2	121.1 (2)	C17—C18—H18	119.4
N1—C7—O1	114.88 (18)	C19—C18—H18	119.4
N1—C7—C1	111.32 (17)	C18—C19—C20	122.2 (3)
O1—C7—C1	108.22 (17)	C18—C19—C24	118.8 (2)
N1—C7—H7	107.4	C20—C19—C24	119.1 (3)

supplementary materials

O1—C7—H7	107.4	C21—C20—C19	121.5 (3)
С1—С7—Н7	107.4	C21—C20—H20	119.2
N1-C8-C15	110.36 (17)	С19—С20—Н20	119.2
N1—C8—C9	109.43 (17)	C20—C21—C22	119.9 (3)
C15—C8—C9	114.52 (17)	C20-C21-H21	120.1
N1—C8—H8	107.4	C22—C21—H21	120.1
С15—С8—Н8	107.4	C23—C22—C21	120.5 (3)
С9—С8—Н8	107.4	С23—С22—Н22	119.7
C14—C9—C10	118.1 (2)	C21—C22—H22	119.8
C14—C9—C8	123.17 (19)	C22—C23—C24	121.3 (3)
C10—C9—C8	118.7 (2)	С22—С23—Н23	119.3
С11—С10—С9	120.7 (3)	С24—С23—Н23	119.3
C11-C10-H10	119.7	C23—C24—C19	117.7 (2)
С9—С10—Н10	119.7	C23—C24—C15	122.6 (2)
C12—C11—C10	120.1 (3)	C19—C24—C15	119.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N1—H1····Cl2	0.851 (10)	2.88 (2)	3.406 (2)	121.6 (19)

